Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system.

نویسندگان

  • Friedrich Laub
  • Lei Lei
  • Hideaki Sumiyoshi
  • Daisuke Kajimura
  • Cecilia Dragomir
  • Silvia Smaldone
  • Adam C Puche
  • Timothy J Petros
  • Carol Mason
  • Luis F Parada
  • Francesco Ramirez
چکیده

The Krüppel-like transcription factors (KLFs) are important regulators of cell proliferation and differentiation in several different organ systems. The mouse Klf7 gene is strongly active in postmitotic neuroblasts of the developing nervous system, and the corresponding protein stimulates transcription of the cyclin-dependent kinase inhibitor p21waf/cip gene. Here we report that loss of KLF7 activity in mice leads to neonatal lethality and a complex phenotype which is associated with deficits in neurite outgrowth and axonal misprojection at selected anatomical locations of the nervous system. Affected axon pathways include those of the olfactory and visual systems, the cerebral cortex, and the hippocampus. In situ hybridizations and immunoblots correlated loss of KLF7 activity in the olfactory epithelium with significant downregulation of the p21waf/cip and p27kip1 genes. Cotransfection experiments extended the last finding by documenting KLF7's ability to transactivate a reporter gene construct driven by the proximal promoter of p27kip1. Consistent with emerging evidence for a role of Cip/Kip proteins in cytoskeletal dynamics, we also documented p21waf/cip and p27kip1 accumulation in the cytoplasm of differentiating olfactory sensory neurons. KLF7 activity might therefore control neuronal morphogenesis in part by optimizing the levels of molecules that promote axon outgrowth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embryonic expression of Krüppel-like factor 6 in neural and non-neural tissues

Mammalian Krüppel-like transcription factors include 12 zinc finger proteins (KLF1-12) that are involved in regulation of cell proliferation and differentiation during morphogenesis and development (Trends Biochem. Sci., 24 (1999) 236). Structural considerations have segregated KLF6 and KLF7 into a separate sub-group, whereas in situ hybridizations have revealed predominant expression of the mo...

متن کامل

Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.

Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical...

متن کامل

The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons.

TrkA, the high affinity receptor for nerve growth factor (NGF), is essential for the development of nociceptive sensory and sympathetic neurons. The zinc finger transcription factor Klf7 interacts with an important cis element of the TrkA minimal enhancer and is coexpressed with TrkA in these neurons. We show that Klf7 binds to the endogenous TrkA minimal enhancer and can activate transcription...

متن کامل

Identification of MoKA, a novel F-box protein that modulates Krüppel-like transcription factor 7 activity.

KLF7, a member of the Krüppel-like transcription factor family, is believed to regulate neurogenesis and cell cycle progression. Here, a yeast two-hybrid screen for KLF7 cofactors in the developing nervous system identified a novel 140-kDa protein named MoKA, for modulator of KLF7 activity. Interaction between MoKA and KLF7 was confirmed by the in vitro glutathione S-transferase pull-down assay...

متن کامل

Combinatorial overexpression of regeneration-associated transcription factors in medium- throughput cellular screens for neurite outgrowth

Peripheral nerve injury induces the expression of many regeneration-associated genes (RAGs), including transcription factors (TFs) such as ATF3, c-Jun and Sox11. RAG expression is essential for successful axonal regeneration and a number of microarray studies have provided insight in the RAG response. TFs can potentially regulate the expression of many genes simultaneously, and some of the regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 13  شماره 

صفحات  -

تاریخ انتشار 2005